

VCCI Test Report

Product Name: USB Hub

Model No. : Expand(XN)

Applicant: Flashbay Electronics

Address: Building2, Jixun Industrial Park, Xinjiao, Dong'ao

Village ,Shatian Town ,Huiyang District ,Huizhou City ,

Guangdong Province, P.R. China

Date of Receipt : May.06, 2022
Test Date : May.09, 2022
Issued Date : May.26, 2022

Report No. : 2250075R-IT-JP-P01V01

Report Template Version : TRF_VCCI CISPR 32 _EMC_V1.2

The test results presented in this report relate only to the object tested.

This report is not used for social proof in China (or Mainland China) market

The measurement result is considered in conformance with the requirement if it is within the prescribed limit, it is not necessary to calculate the uncertainty associated with the measurement result.

This report must not be used to claim product endorsement by TAF or any agency of the government.

This report shall not be reproduced, except in full, without the written approval of DEKRA Testing and Certification (Suzhou) Co., Ltd.

Report No.: 2250075R-IT-JP-P01V01

Issued Date : May.26, 2022

Report No. : 2250075R -IT-JP-P01V01

Product Name : USB Hub

Applicant : Flashbay Electronics

Address : Building2 ,Jixun Industrial Park ,Xinjiao ,Dong'ao Village ,Shatian

Town , Huiyang District , Huizhou City , Guangdong

Province, P.R. China

Manufacturer : Flashbay Electronics

Address : Building2 ,Jixun Industrial Park ,Xinjiao ,Dong'ao Village ,Shatian

Town , Huiyang District , Huizhou City , Guangdong

Province, P.R. China

Model No. : Expand(XN)

EUT Rated Voltage : DC 5V
EUT Test Voltage : DC 5V
Trade Name : N/A

Applicable Standard : VCCI CISPR 32: 2016

Test Result : Complied

Performed Location : DEKRA Testing and Certification Co., Ltd.

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006,

Jiangsu, China

TEL: +86-512-62515088 / FAX: +86-512-62515098

VCCI Registration Number:

AC1: R-12341 (RE Below 1GHz); AC5: G-10041 (RE Above 1GHz) TR1: C-12553 (CE Mains); TR1: T-11531 (CE Telecommunication)

Tested By : Pavid Da

(Project Engineer: David Dai)

Approved By :

(Manager: Oscar Shi)

TABLE OF CONTENTS

Desc	cription	Page
1.	General Information	5
1.1.	EUT Description	5
1.2.	Mode of Operation	5
1.3.	Tested System Details	5
1.1.	Configuration of Tested System	6
1.4.	EUT Exercise Software	6
2.	Technical Test	7
2.1.	Summary of Test Result	7
2.2.	List of Test Equipment	7
2.3.	Measurement Uncertainty	8
3.	Conducted Emission (Main Terminals)	9
3.1.	Test Specification	9
3.2.	Test Setup	9
3.3.	Limit	9
3.4.	Test Procedure	10
3.5.	Deviation from Test Standard	10
3.6.	Test Result	11
3.7.	Test Photograph	12
4.	Asymmetric mode conducted emissions	13
4.1.	Test Specification	13
4.2.	Test Setup	13
4.3.	Limit	13
4.4.	Test Procedure	15
4.5.	Deviation from Test Standard	15
4.6.	Test Result	16
5.	Radiated Emission	17
5.1.	Test Specification	17
5.2.	Test Setup	17
5.3.	Limit	17
5.4.	Test Procedure	19
5.5.	Deviation from Test Standard	19
5.6.	Test Result	20
5.7.	Test Photograph	22
6.	Attachment	23
	EUT Photograph	23

Document History

Report NO.	Date	Description
2250075R-IT-JP-P01V01	May.26, 2022	First release

1. General Information

1.1. EUT Description

Product Name	USB Hub
Model No.	Expand(XN)
Brand Name	N/A

Note 1: The EUT information is from customer declaration.

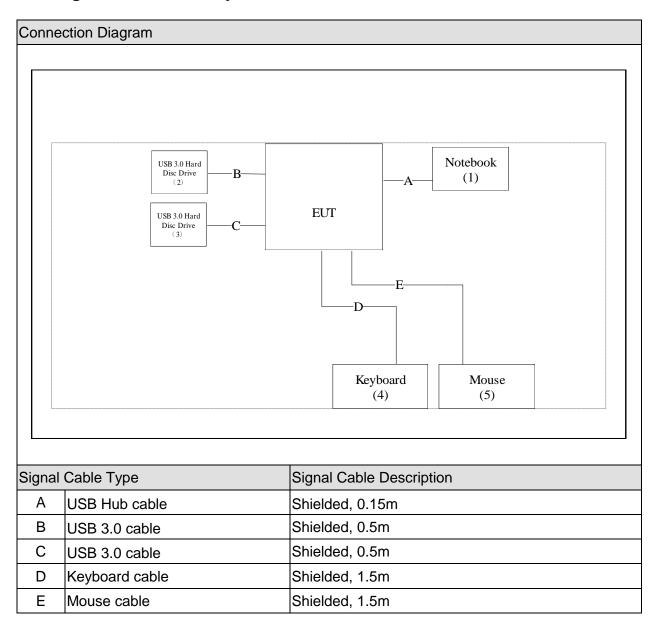
Note 2: The highest internal frequency of the EUT is less than 108MHz.

.

1.2. Mode of Operation

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Test Mode	e
Emission	Mode 1: Working normally


1.3. Tested System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

Product		Manufacturer	Model No.	Serial No.	Power Cord
1	Notebook	DELL	N/A	N/A	Power by adapter
2	USB 3.0 Hard	WD Elements	N/A	N/A	Power by PC
	Disc Drive		IN/A		
	USB 3.0 Hard	WD Elements	N/A	N/A	Dower by DC
3	Disc Drive		IN/A	IN/A	Power by PC
4	Keyboard	DELL	N/A	N/A	Power by PC
5	Mouse	DELL	N/A	N/A	Power by PC

1.1. Configuration of Tested System

1.4. EUT Exercise Software

1	Setup the EUT and simulators as shown on above.
2	Turn on the Power of all equipments.
3	Confirm that the EUT can be normally.
4	Start testing

2. Technical Test

2.1. Summary of Test Result

No deviations from the test standards
Deviations from the test standards as below description:

Emission					
Performed Item	Normative References	Test Performed	Deviation		
Conducted Emission	VCCI CISPR 32: 2016	No	No		
Asymmetric mode conducted emissions	VCCI CISPR 32: 2016	No	No		
Radiated Emission	VCCI CISPR 32: 2016	Yes	No		

2.2. List of Test Equipment

Radiated Emission / AC1

Instrument	Manufacturer	Model No.	Serial No.	Cali. Date	Cali. Due Date
EMI Test Receiver	R&S	ESCI	100175	2021.07.11	2022.07.10
EMI Test Receiver	R&S	ESCI	100726	2021.10.30	2022.10.29
Preamplifier	Quietek	AP-025C	CHM-0602008	2022.03.31	2023.03.30
Preamplifier	Quietek	AP-025C	CHM-0503006	2022.03.31	2023.03.30
Bilog Antenna	SCHWARZBE CK	VULB 9168	01099	2022.03.15	2023.03.14
Bilog Antenna	SCHWARZBE CK	VULB 9168	01100	2021.05.20	2022.05.19
Coaxial Cable	Huber+Suhner	RG 214_U	AC1-L	2022.03.31	2023.03.30
Coaxial Cable	Huber+Suhner	RG 214_U	AC1-R	2022.03.31	2023.03.30
Temperature/Humidity Meter	RTS	RTS-8S	AC1-TH	2021.07.09	2022.07.08

2.3. Measurement Uncertainty

Radiated Emission / AC1

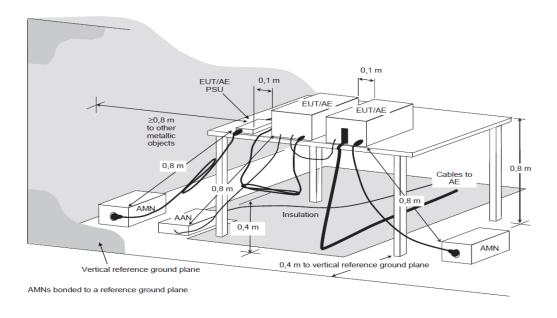
The maximum measurement uncertainty is evaluated as:

Horizontal: 30MHz~200MHz: 5.28 dB

200MHz~1GHz: 4.24 dB

Vertical: 30MHz~200MHz: 5.28 dB

200MHz~1GHz: 4.58 dB



3. Conducted Emission (Main Terminals)

3.1. Test Specification

According to EMC Standard: VCCI CISPR 32

3.2. Test Setup

3.3. Limit

Applicable to							
	AC mains power ports						
Frequency range	Frequency range Coupling device Detector type/ Class A limits						
MHz Bandwidth dB(μV)							
0.15 – 0.5	AMN	Quasi Peak / 9 KHz	79				
0.5 – 30	73						
0.15 – 0.5	AMN	Average / 9 KHz	66				
0.5 – 30							
Both apply across the entire frequency range.							

Applicable to						
	AC mains power ports					
Frequency range	Frequency range Coupling device Detector type/ Class B limits					
MHz Bandwidth dB(μV)						

0.15 – 0.5	AMN	Quasi Peak / 9 KHz	66 – 56		
0.5 – 5			56		
5 – 30			60		
0.15 – 0.5	AMN	Average / 9 KHz	56 – 46		
0.5 – 5			46		
5 – 30			50		
Both apply across the entire frequency range.					

Remarks:

If the limits for the average detector are met when using the quasi-peak detector, then the limits for the measurement with the average detector are considered to be met.

3.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination.

(Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

3.5. Deviation from Test Standard

No deviation.

3.6. Test Result

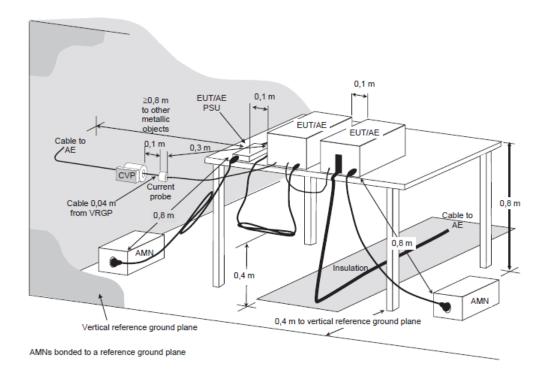
The EUT does not contain the power port, so the test item is not necessary performed.

Page: 11 of 25

Report No.: 2250075R-IT-JP-P01V01

3.7. Test Photograph

N/A



4. Asymmetric mode conducted emissions

4.1. Test Specification

According to EMC Standard: VCCI CISPR 32

4.2. Test Setup

4.3. Limit

Applicable to

- 1. wired network ports
- 2. optical fibre port with metallic shield or tension members
- 3. antenna ports

Frequency	Coupling device	Detector type/	Class A	Class A current limits	
range		Bandwidth	voltage limits	dB(μA)	
MHz			dB(μV)		
0.15 – 0.5	AAN	Quasi Peak / 9 KHz	97 – 87	N/A	
0.5 – 30			87		
0.15 – 0.5	AAN	Average / 9 KHz	84 – 74		
0.5 – 30			74		
0.15 – 0.5	CVP	Quasi Peak / 9 KHz	97 – 87	53 – 43	

Page: 13 of 25

0.5 – 30	And current probe		87	43
0.15 – 0.5	CVP	Average / 9 KHz	84 – 74	40 – 30
0.5 – 30	And current probe		74	30
0.15 – 0.5	Current Probe	Quasi Peak / 9 KHz	N/A	53 – 43
0.5 – 30				43
0.15 – 0.5	Current Probe	Average / 9 KHz		40 – 30
0.5 – 30				30

The choice of coupling device and measurement procedure is defined in CISPR 32 Annex C. Screened ports including TV broadcast receiver tuner ports are tested with a common-mode impedance of 150 Ω .

This is typically accomplished with the screen terminated by 150 Ω to earth.

AC mains ports that also have the function of a wired network port shall meet the limits given in CISPR 32 Table A.9.

The test shall cover the entire frequency range.

The application of the voltage and/or current limits is dependent on the measurement procedure used. Refer to VCCI CISPR 32

Table C.1 for applicability.

Testing is required at only one EUT supply voltage and frequency.

Applicable to ports listed above and intended to connect to cables longer than 3 m

Applicable to

- 4. wired network ports
- 5. optical fibre port with metallic shield or tension members
- 6. antenna ports

Frequency range	Coupling device	Detector type / Bandwidth	Class B voltage limits dB (µV)	Class B current limits dB (µA)
MHz		Banawian	minto de (µv)	minto de (p/ t)
0.15 - 0.5	AAN	Quasi Peak / 9 KHz	84 – 74	N/A
0.5 - 30			74	
0.15 – 0.5	AAN	Average / 9 KHz	74 – 64	
0.5 - 30			64	
0.15 – 0.5	CVP	Quasi Peak / 9 KHz	84 – 74	40 – 30
0.5 - 30	And current probe		74	30
0.15 – 0.5	CVP	Average / 9 KHz	74 – 64	30 – 20
0.5 - 30	And current probe		64	20
0.15 – 0.5	Current Probe	Quasi Peak / 9 KHz	N/A	40 – 30
0.5 - 30				30
0.15 – 0.5	Current Probe	Average / 9 KHz		30 – 20
0.5 - 30				20

The choice of coupling device and measurement procedure is defined in CISPR 32 Annex C. Screened ports including TV broadcast receiver tuner ports are tested with a common-mode impedance of 150 Ω .

This is typically accomplished with the screen terminated by 150 Ω to earth.

AC mains ports that also have the function of a wired network port shall meet the limits given in CISPR 32 Table A.9.

The test shall cover the entire frequency range.

The application of the voltage and/or current limits is dependent on the measurement procedure used. Refer to VCCI CISPR 32

Table C.1 for applicability.

Testing is required at only one EUT supply voltage and frequency.
Applicable to ports listed above and intended to connect to cables longer than 3 m
Remarks:

The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz~0.50 MHz.

4.4. Test Procedure

Telecommunication Port:

The mains voltage shall be supplied to the EUT via the LISN when the measurement of telecommunication port is performed. The common mode disturbances at the telecommunication port shall be connected to the ISN, which is 150 ohm impedance. Both alternative cables are tested related to the LCL requested. The measurement range is from 150kHz to 30MHz. The bandwidth of measurement is set to 9kHz. The 75dB LCL ISN is used for cat. 6 cable, the 65dB LCL ISN is used for cat. 5 cable, 55dB LCL ISN is used for cat. 3.

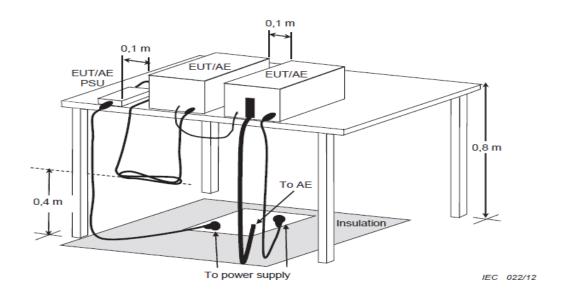
4.5. Deviation from Test Standard

No deviation.

4.6. Test Result

The EUT does not contain the above three ports, so it needs not to perform this test item.

Page: 16 of 25



5. Radiated Emission

5.1. Test Specification

According to EMC Standard: VCCI CISPR 32

5.2. Test Setup

5.3. Limit

Radiated emissions at frequencies up to 1 GHz for Class A equipment

Frequency range	Meas	urement	Class A limits dB(µV/m)
MHz	Distance	Detector type/	OATS / SAC
	m	Bandwidth	
30-230	10	Quasi Peak /	40
230-1000		120 KHz	47
30-230	3		50
230-1000			57
Apply only 3m or 10	m across the entire	e frequency range	

Radiated emissions at frequencies above 1 GHz

for Class A equipment

Frequency range	Measurement	Class A limits dB(µV/m)
-----------------	-------------	-------------------------

MHz	Distance	Detector type/	OATS / SAC
	m	Bandwidth	
1000-3000		Average /	56
3000-6000	3	1 MHz	60
1000-3000		Peak /	76
3000-6000		1 MHz	80

Apply across the frequency range from 1000 MHz to the highest required frequency of measurement derived from

for Class B equipment

Frequency range	Meas	urement	Class B limits dB(µV/m)					
MHz	Distance	Detector type/	OATS / SAC					
	m	Bandwidth						
30-230	10 Quasi Peak /		30					
230-1000		120 KHz	37					
30-230	3		40					
230-1000			47					
Apply only 3m or 10	Apply only 3m or 10m across the entire frequency range							

Radiated emissions at frequencies above 1 GHz

for Class B equipment

Frequency range	Measi	urement	Class B limits dB(µV/m)		
MHz	Distance Detector type/		OATS / SAC		
	m	Bandwidth			
1000-3000		Average /	50		
3000-6000	3	1 MHz	54		
1000-3000		Peak /	70		
3000-6000		1 MHz	74		

Both apply across the frequency range from 1000 MHz to the highest required frequency of measurement derived from

Required highest frequency for radiated measurement

Highest internal frequency	Highest measured frequency
(Fx)	
<i>F</i> x ≤ 108 MHz 1 GHz	108 MHz < <i>F</i> x ≤ 500 MHz 2 GHz
500 MHz < <i>F</i> x ≤ 1 GHz 5 GHz	Fx > 1 GHz 5 × Fx up to a maximum of 6 GHz

Page: 18 of 25

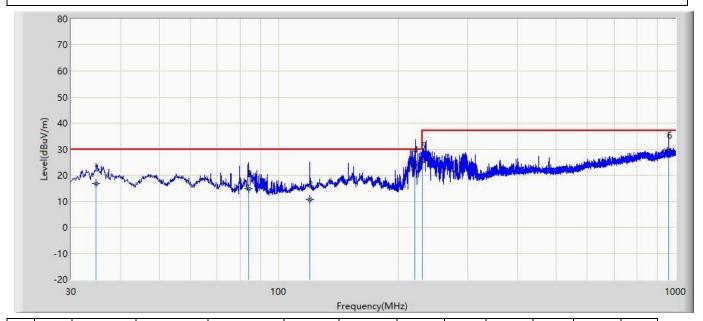
<i>F</i> x ≤ 108 MHz 1 GHz	108 MHz < <i>F</i> x ≤ 500 MHz 2 GHz					
500 MHz < <i>F</i> x ≤ 1 GHz 5 GHz	Fx > 1 GHz 5 × Fx up to a maximum of 6 GHz					
NOTE 1 For FM and TV broadcast receivers, Fx is determined from the highest frequency						
generated or used excluding the local oscillator and tuned frequencies.						
NOTE 2 Fx is defined in 3.1.19.	NOTE 2 Fx is defined in 3.1.19.					

5.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3/10 meters. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

All cable leaving the table-top EUT for a connection outside the test site (for example, mains cable, telephone lines, connections to auxiliary equipment located outside the test area) shall be fitted with ferrite clamps placed on the floor at the point where the cable reached the floor. Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated on radiated measurement.

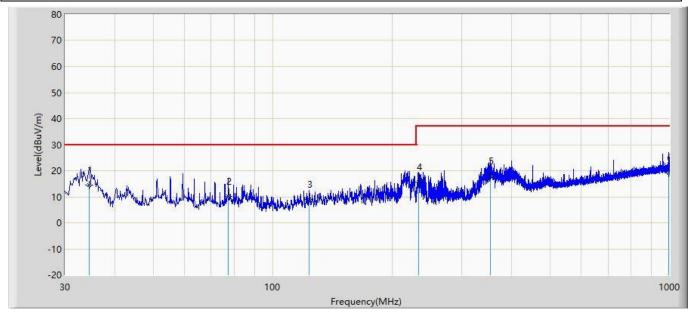
Radiated emissions were invested over the frequency range from 30MHz to1GHz using a receiver bandwidth of 120kHz and above 1GHz using a receiver bandwidth of 1MHz. 30MHz to1GHz Radiated was performed at an antenna to EUT distance of 10 meters. Above1GHz Radiated was performed at an antenna to EUT distance of 3 meters.


5.5. Deviation from Test Standard

No deviation.

5.6. Test Result

Engineer: Tony				
Site: AC1	Time: 2022/05/09			
Limit: VCCI_RE(10m)_Class B	Margin: 0			
Probe: VULB9168_01099(30-1000MHz)	Polarity: Horizontal			
EUT: USB Hub	Power: DC 5V			
Note: Mode 1				


No	Mark	Frequency	Measure	Reading	Over	Limit	Probe	Cable	Amp	Ant	Table	Туре
		(MHz)	Level	Level	Limit	(dBuV/m)	(dB/m)	(dB)	(dB)	Pos	Pos	
			(dBuV/m)	(dBuV)	(dB)					(cm)	(deg)	
1		34.729	16.712	24.800	-13.288	30.000	12.453	1.047	21.588	200	150	QP
2		83.956	14.806	26.400	-15.194	30.000	8.340	1.695	21.629	100	25	QP
3		119.967	10.739	19.200	-19.261	30.000	11.042	2.065	21.568	100	25	QP
4	*	220.142	24.159	33.100	-5.841	30.000	9.618	2.910	21.469	400	143	QP
5		230.426	25.538	33.560	-11.462	37.000	10.475	2.983	21.480	100	15	QP
6		959.987	29.595	18.800	-7.405	37.000	23.771	6.945	19.921	400	48	QP

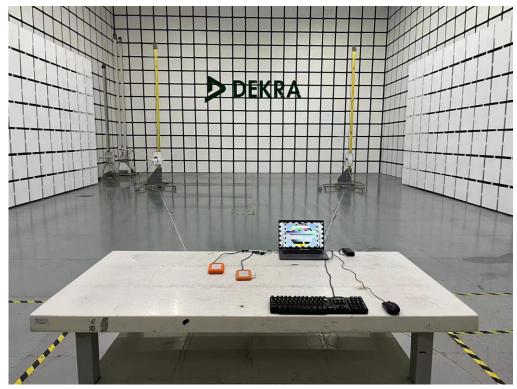
Note:

- 1. " * ", means this data is the worst emission level.
- 2. Measurement Level = Reading Level + Factor(Probe+Cable-Amp).

Engineer: Tony						
Site: AC1	Time: 2022/05/09					
Limit: VCCI_RE(10m)_Class B	Margin: 0					
Probe: VULB9168_01100(30-1000MHz)	Polarity: Vertical					
EUT: USB Hub	Power: DC 5V					
Note: Mode 1						

No	Mark	Frequency	Measure	Reading	Over	Limit	Probe	Cable	Amp	Ant	Table	Туре
		(MHz)	Level	Level	Limit	(dBuV/m)	(dB/m)	(dB)	(dB)	Pos	Pos	
			(dBuV/m)	(dBuV)	(dB)					(cm)	(deg)	
1	*	34.486	14.563	33.800	-15.437	30.000	12.724	1.169	33.130	100	150	QP
2		77.409	10.023	32.100	-19.977	30.000	9.626	1.816	33.519	100	15	QP
3		123.849	8.960	29.500	-21.040	30.000	10.681	2.349	33.570	100	26	QP
4		233.821	15.580	34.800	-21.420	37.000	10.813	3.359	33.392	150	60	QP
5		353.131	17.948	32.500	-19.052	37.000	14.316	4.250	33.117	100	150	QP
6		994.786	19.023	18.500	-17.977	37.000	23.658	7.895	31.029	100	6	QP

Note:


- 1. " * ", means this data is the worst emission level.
- 2. Measurement Level = Reading Level + Factor(Probe+Cable-Amp).

5.7. Test Photograph

Test Mode: Mode 1

Description: Front View of Radiated Emission Test Setup (Below 1G)

Test Mode: Mode 1

Description: Back View of Radiated Emission Test Setup (Below 1G)


6. Attachment

> EUT Photograph

(1) EUT Photo

(2) EUT Photo



(3) EUT Photo

(4) EUT Photo

(5) EUT Photo

The End